На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
строительное дело
крупнозернистый асфальтобетон
['æsfælt]
общая лексика
асфальт
асфальтовый
битум
асфальтобетон
асфальтировать
покрывать асфальтом
строительное дело
асфальт (смесь битума с минеральным наполнителем)
нефтегазовая промышленность
асфальтовый битум
нефтяной битум (США)
смесь асфальтового вяжущего материала с минеральным наполнителем (Великобритания)
прилагательное
['æsfælt]
общая лексика
асфальтовый
существительное
['æsfælt]
общая лексика
асфальт
битум
глагол
общая лексика
покрывать асфальтом
асфальтировать
покрывать асфальтом, асфальтировать
[kɔ:s]
общая лексика
грубый
крупный
крупнозернистый
необработанный
сырой
черновой
шероховатый
с крупным шагом (о резьбе)
прилагательное
общая лексика
грубый
крупный
крупнозернистый
негладкий
шероховатый
необделанный
сырой (о материале)
невежливый
непристойный
вульгарный
необработанный, шероховатый (о материале)
низкого сорта
грубый, невежливый
непристойный, вульгарный
синоним
In the mathematical fields of geometry and topology, a coarse structure on a set X is a collection of subsets of the cartesian product X × X with certain properties which allow the large-scale structure of metric spaces and topological spaces to be defined.
The concern of traditional geometry and topology is with the small-scale structure of the space: properties such as the continuity of a function depend on whether the inverse images of small open sets, or neighborhoods, are themselves open. Large-scale properties of a space—such as boundedness, or the degrees of freedom of the space—do not depend on such features. Coarse geometry and coarse topology provide tools for measuring the large-scale properties of a space, and just as a metric or a topology contains information on the small-scale structure of a space, a coarse structure contains information on its large-scale properties.
Properly, a coarse structure is not the large-scale analog of a topological structure, but of a uniform structure.